# there no change change in the first several cells from last lecture
Building makemore Part 5: Building a WaveNet
Neural Networks: Zero to Hero
WIP
Course Page: https://karpathy.ai/zero-to-hero.html
Setup
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt # for making figures
%matplotlib inline
# read in all the words
= open('names.txt', 'r').read().splitlines()
words print(len(words))
print(max(len(w) for w in words))
print(words[:8])
32033
15
['emma', 'olivia', 'ava', 'isabella', 'sophia', 'charlotte', 'mia', 'amelia']
# build the vocabulary of characters and mappings to/from integers
= sorted(list(set(''.join(words))))
chars = {s:i+1 for i,s in enumerate(chars)}
stoi '.'] = 0
stoi[= {i:s for s,i in stoi.items()}
itos = len(itos)
vocab_size print(itos)
print(vocab_size)
{1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e', 6: 'f', 7: 'g', 8: 'h', 9: 'i', 10: 'j', 11: 'k', 12: 'l', 13: 'm', 14: 'n', 15: 'o', 16: 'p', 17: 'q', 18: 'r', 19: 's', 20: 't', 21: 'u', 22: 'v', 23: 'w', 24: 'x', 25: 'y', 26: 'z', 0: '.'}
27
# build the dataset
= 16 # context length: how many characters do we take to predict the next one?
block_size
def build_dataset(words):
= [], []
X, Y
for w in words:
= [0] * block_size
context for ch in w + '.':
= stoi[ch]
ix
X.append(context)
Y.append(ix)= context[1:] + [ix] # crop and append
context
= torch.tensor(X)
X = torch.tensor(Y)
Y print(X.shape, Y.shape)
return X, Y
import random
42)
random.seed(
random.shuffle(words)= int(0.8*len(words))
n1 = int(0.9*len(words))
n2
= build_dataset(words[:n1]) # 80%
Xtr, Ytr = build_dataset(words[n1:n2]) # 10%
Xdev, Ydev = build_dataset(words[n2:]) # 10% Xte, Yte
torch.Size([182580, 16]) torch.Size([182580])
torch.Size([22767, 16]) torch.Size([22767])
torch.Size([22799, 16]) torch.Size([22799])
class ResBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation):
self.dilated_conv_filter = torch.nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation)
self.dilated_conv_gate = torch.nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation)
self.id_conv = torch.nn.Conv1d(in_channels, out_channels, 1)
def forward(self, x):
= self.dilated_conv_filter(x)
conv_filter = self.dilated_conv_gate(x)
conv_gate = torch.tanh(conv_filter) * torch.sigmoid(conv_gate)
z = self.id_conv(z)
id_conv_out = id_conv_out + x
res_out = id_conv_out.clone()
skip_out return res_out, skip_out